
J O U R N A L  O F  A P P L I E D  M E C H A N I C S  A N D  T E C H N I C A L  P H Y S I C S  95 

SELF-SIMILAR PROBLEMS OF CONVECTIVE DIFFUSION IN THE PRESENCE OF HETEROGENEOUS CHEMICAL 
REACTIONS WITH ALLOWANCE FOR THERMAL DIFFUSION EFFECTS 

A. M. Suponitskii 

Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 7, No. 4, pp. 130-132, 1966 

ABSTRACT: A number of studies have been made of the problem of the 
effect of a temperature gradient on mass transfer in a forced viscous 
fluid flow. The question of allowing for thermal diffusion effects has 
been examined in connection with flow around bodies [1-4] ,  duct flow 
[5], and jet flows [6,7] .  Recently, in addition to the problem of 
thermal diffusion separation, the attention of investigators has been 
claimed by the problem of taking into account the effect of thermaI 
diffusion on mass transfer in a convective flow in the presence of 
chemical reactions on the flow surfaces [4]. * 

1. Let a laminar flow of a viscous incompressible fluid containing a 
certain substance A flow around a body with a chemically active 
surface, on which the substance A engages in a heterogeneous chemical 
reaction with the material of the surface [8]. If the flow temperature 
To and the surface temperature T~ are different, mass transfer by 
thermal diffusion will occur. 

We will consider the problem of taking into account thermal 
diffusion effects in the presence of heterogeneous chemical reactions 
with mixed kinetics. For flows in which the velocity component normal 
to the surface depends only on the coordinate normal to the surface 
this problem has a similar solution. We introduce an orthogonal 
coordinate system tied to the body, letting the coordinate surface 
y = 0 coincide with the surface of the body. The self-similar problem 
investigated is described by the following system of equations and 
boundary conditions: 

c ( y ) = c o ,  T ( y ) = T o  at y = ~ ,  

joe . 
D ~-y + ~ c ( l - - c )  = k c  , T ( y ) = T a  at y = 0 .  (1.1) 

Here c(y), T(y) are the temperature and concentration at a given 
point in the flow, D, X are the diffusion coefficient and thermal 
diffusivity, c o is the concentration remote from the body, k is the 
rate constant of the chemical reaction [k = k 0 exp(--S./T)],  the con- 
stants k0 and ~ being determined by the specific form of the chemical 
reaction; o is the Soret coefficient. The function q(y/N) and the 
constants M and N are found from the solution of the corresponding 
problem of the hydrodynamics of a viscous fluid. For the case of rota- 
tion of a disc at constant angular velocity w (Karman problem) we 
have M = ( w v )  1/z , N = ( v /w)  l / z  . The velocity component normal to 
the surface of the disc has the form Vy = --M~(y/N). The function 
9(y/N7 is found by numerical solution of a system of ordinary dif- 
ferential equations [8]. 

In studying the problem of thermal-diffusion separation on imper- 
meable surfaces, the author compared small-parameter methods and 
the method of approximation of the temperature distribution by a 
linear function [2, 3].  In the present case it is convenient to use the 
method of a linear approximation of the temperature distribution. In 

fluids the thermal Prandtl number is usually much smaller than the 
diffusion value; therefore it is natural to assume that the thermal layer 

is much thicker than the diffusion layer. 

The heat transfer equation of system (i.i) is integrated in quadra- 
tures. We expand the solution obtained for the temperature distribution 
in a Maclaurin sexies, confining ourselves to the first two terms. After 
substituting this linear function in the diffusion part of problem (1.1), 
we obtain for low-concentration solutions [c(1 -- c) ~ c] 

- -  Sep (TI) c'. n, = c".n. ~ -l-qc'n; c'~ + qc ~ pc n for D = 0, 

c ( D ) =  co for ~1= oo 

S =  , ~ I= -N- ,  q = ~ ( T 0 - - T ] ) a ( Q )  , 

Q M N  kN  
= - -  ' P = - - G  ' 

�9 X 

eo  ~. - 1  

Integrating (1.27, we have 

S +"], 
0 o 

(1.3) 

where the constants A and I3 are given by 

A = (i - -  B )  [~ (S ,  q) ,  "LB n = B [ q - -  [3 (S ,  q)] -~ ~ (S, q) 
c o  ~q 

E! ( ) F  (~(S,q)= ~xp - s  i ~ (;) < - q n  an , x = p c : - 1 7 .  
o 

The algebraic equation for B can be solved rapidly. 
The mass flux at the surface is given by 

k n n n (1.5) i =  c [v=o=kco B �9 

At large values of the thermal and diffusion Prandtl numbers, 
assuming ~(~) = I~ 2 and taking into account the smallness of the 

quantity q, we obtain 

Q E V" 

a ( Q ) -  3,/0r(%) ' , 

[ 3 'hr(%)q 1 (SE)'/' t + - 

(s, Q ) -  3'/,r (%) 2r (%)(SE)'/" (1.6) 

As an example of the use of the resuks obtained above we will 
consider the problem of allowing for thermal diffusion effects in the 
presence of first-order (n = 1) heterogeneous chemical reactions. From 
(1.47 and (1.5) it follows that 

kco~ (s,  q) (1.77 
/ = k c l u = o = ~ , - - q  + ~ ( S ,  q)" 

For large thermal and diffusion Prandtl numbers, considering the 
smallness of the quantity q, in the case of small X we obtain 

/--io =~(To--TI)T V' (T: ~-) (1.87 
/o 

where j0 is mass flux at the surface under isothermal conditions. 

For large values of k from (1.7) we have 

/ --/o G (To -- TI) TV3F (5/3) *The author dealt with similar problems in his dissertation (Moscow 
State University, 1964). l o --  2F2(4/8) (1.9) 
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A comparison of (1.8) and (1.9) shows that the relative influence of 
thermal diffusion on the mass flux is more strongly manifested at small 
values of the parameter k, i . e . ,  undex conditions close to purely 
kinetic. Relations (1.8) and (1.9) show that at large values of tile 
thermal and diffusion Prandtl numbers for cases of purely diffusion and 
purely chemical kinetics the relative variation of the mass flux at the 
surface does not depend on the shape of the surface and the hydro- 
dynamic characteristics of the flow. The case of impermeable surfaces, 
the limiting case for small k, was examined in [2, 3]. Below we con- 
sider the case of purely diffusion kinetics, the limiting case for large L. 

2. We will consider the problem of mass transfer in a planelaminar 
boundary layer in the presence of thermal diffusion effects. The dif- 
fusion and thermal Prandtl numbers will be assumed to be large. We 
introduce an orthogonal coordinate system tied to the body, letting the 
line y = O coincide with the contour of the body. This problem is 
described by the equations 

OT OT 02T 

Oc Oc 0 

the relations 

u (~, y) = �9 (~) y / ~ ,  

and the boundary conditions 

T (x, 0) = Ta, 
e (x, oo) = To, 

T(O, y ) =  To, 

v ~ - - T "  (x)y 2 / 2t~ , (2.2) 

c (z, 0) = 0 ,  
c (z, o r  co, 
c ( 0 ,  y ) = c 0 .  (2.3) 

Here u(x, y), v(x, y) are the velocity components, T(x, y) the tem- 
perature, c(x, y) the concentration, r(x) the friction stress at the sur- 
face, and # the coefficient of dynamic viscosity. Problem (2.1)-(2.3) 
is self-similar. Betting 

~'l, ( .)  y 
T ~  TO1), c ~  col), r l ~ t  -%, c 0 ~ ,  

x 
t=(Slx)- ' / ' I~ 'h(~)d~. ,  M-~- (3D) -r, , N (3Z)-I (2.4) 

0 

we obtain the following system: 

--M112%" ~ [%" -Jr ac (t - -  c) T~']~,,  - -  N~I~Tff = T ~ " ,  

c ( 0 ) = 0 ,  T(0)-~-~T1; c ( ~ ) ~  Co, T ( ~ ) =  To. (2.5) 

At low concentrations we may assurne that c(1 - c) ~ c. 

We introduce the new variable z = N 1/a 0; we expand the function 
T(z), giving the solution of the thermal part of the problem (2.5), in 
a Maclaurin series, confining ourselves to the first two terms. After 
substituting the thus determined linear approximation of the tempera- 
ture distribution function in the diffusion part of problem (2.5), we 
obtain 

~l-lz2cz" = czz" + qc,', c (0) : O, c (oo) = co 

g D (~ (To - -  T1)'~ 

r = N - = - - ~ - ,  q - -  3V,r(%) ]" (2 

Integrating (2.t~), we find 

z 

c (z) ~ CO~ (,~, q) ! exp (__ ~3 -gf --  q~ ) d~, 

0o --1 [! �9 
6 (T, q) ~ exp \ - -  "~-y _, (2.7) 

The mass flux at the surface 

i - -  __i 1" = D%6 (~,. q) l/'~-(x) ( 1 ]/"r (~) dE) [3 

r  (ax)  '/' ~ - ~  o . ( e . 8 )  

We form the ratio of the mass flux at the surface with allowance 
for thermal diffusion to the mass flux under isothermal conditions. From 
(2.8) we have 

i / i0 = 6 (% q) / 5 (% 0). (2 .9 )  

It follows from (2.9) that the ratio J/J0 does not depend on theshape 
of the surface and the hydrodynamic characteristics of the flow. In 
view of the smallness of the quantity q, we obtain 

1"--/o 6 (T~  T1) ";%F(z/a) (2.10) 
l o = - -  2I ̀2 (4/3) 

Thus, relation (1.9) is valid over a quite wide range of flows. 
The author thanks G. I. Barenblatt for his interest and advice. 
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